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Abstract
The idea of quantifying order in disordered systems has been introduced
recently by Torquato and co-workers (2000 Phys. Rev. E 62 993–1001). We are
interested in the application of this idea to measure structure in non-equilibrium
systems. Here we focus on gels, using as a model system colloidal gels formed
from hard spheres with polymer added to the systems to induce a controlled,
weak attraction. To describe the structure of the gels we use real space imaging
via confocal microscopy to obtain the full three-dimensional structure. We
measure experimentally both translational order and bond angle correlations,
defining a new (refined) translational order parameter that is sensitive to long
range order in these non-random packings. This metric is also sensitive to
anisotropy, which should be important in the many physical situations where
an external force is present. The bond angle distribution shows coordinated
organization. To give a clearer physical picture for gels, we compare the
experimental data to computer generated hard sphere systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Gels are networks of weakly attractive constituents that are formed from building blocks that
are soluble or dispersed in suspension. The networks assume configurations that guarantee
mechanical stability, on experimental or functional timescales, in many cases. Other gels
are transient networks that reorganize actively in response to external stimuli, as in actin
cytoskeletal networks [2], or in a passive fashion before collapsing under their own weight [3].
The gel network must be subject to internal regulation mechanisms that allow its organization
into a network that fluctuates while retaining its mechanical integrity. We wish to understand
the control mechanisms that determine the structure, the mechanical rigidity, and, ultimately,
the long time dynamics. A colloidal gel is an excellent model system for approaching this goal.
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Colloids are well-characterized model systems. They can be made repulsive, attractive,
or hard sphere-like. They can also be made to form non-equilibrium structures such as gels
and glasses by tuning their interactions. They are an excellent realization of atomic systems,
as their interactions may be tailored to mimic atomic pair interactions; however, they are
large enough (∼1 µm) and slow enough to change (diffusion times of ∼ms to s) that we can
directly observe them in real time using microscopy and make quantitative measurements of
their structure and dynamics [4]. Colloidal gels, like any gels, are sample spanning networks
composed of constituents that are made to interact strongly.

We visualize the structure by confocal microscopy and use feature finding algorithms
allowing precise location of the centre of mass for all the particles via stacks of images taken
at controlled time intervals. These methods provide the full 3D structure. On the timescale of
a single stack of images, the structures are arrested; hence this method is well suited for study
of the gel structure. We begin the structural analysis by calculating for the gels a translational
order parameter previously suggested by Torquato et al [5] for identifying non-equilibrium
hard sphere packings [1, 5]:

T ∗
s = 1

rc − σ

∫ rc

σ

|g(r) − 1| dr, (1)

where σ is the diameter of the sphere and rc is a cut-off distance that ensures integration over an
equal number of coordinate shells across configurations with different particle densities. The
central element for the translational order parameter, the radial distribution function (RDF)
g(r), measures at what distance a pair of particles prefer to be separated relative to the situation
for an ideal gas. g(r) − 1 provides a measure of the deviation of the structure from that of an
ideal gas. Any deviation from ideal gas will give a corresponding contribution to the integral
in (1). The important, novel Torquato translational order parameter is not appropriate for
systems with some short range to mid-range order. Such systems call for careful treatment
with any order metric, to ensure proper weighting of the structure on different length scales.
Nevertheless, T ∗

s can be adapted to handle this weighting correctly, as we have done here, and
in this new form it can also be recast such that it is sensitive to anisotropy.

We also measure the nearest neighbour bond angle distribution in the gels. The bond
angle distribution measures the local relative orientation of nearest neighbours. We calculate
the distributions of those angles from the experimental data. The treatment is novel and the
effects discussed will be of particular interest in systems with strong interparticle attractions.

2. Experimental details

We use in our experiment colloidal PMMA spheres whose diameters are 1.26 µm, sterically
stabilized with a PHSA 12-carbon layer grafted onto the surface of the particles. We add a
controllable interparticle attraction to the system, via depletion [6], through the addition of
polymer. The range of the interparticle potential depends on the size of the polymer in the
suspending fluid, and the depth of the potential well at contact on the polymer concentration
and on the size asymmetry between the polymer and colloid, offering a degree of control over
the range and depth of the potential. In the present work, we use a solution of polystyrene
chains of a particular, well-defined molecular weight with a mean end-to-end distance of
91 nm in solution to control the potential well. Care is taken to use proper scaling of the size
of the polymer at sufficiently high concentrations where the polymer chains interact with each
other [7]. The resulting pair potential is shown in figure 1 (left). We use a mixture of decalin
and tetralin to match the refractive index of the colloidal PMMA particles,enabling observation
by laser scanning confocal microscopy deep into the sample to obtain high resolution images.
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Figure 1. Left: the Asakura–Oosawa depletion potential for gel1, plotted as a function of
interparticle separation. Distance is normalized to the colloidal particle diameter σ . Middle:
a typical 2D image from a stack of images through the gel, at 18 µm depth into the sample from
the cover slip, illustrating the connectivity of the colloidal gel network. Right: the reconstruction
obtained from a stack of two-dimensional images acquired at successive focal planes spaced 0.5 µm
apart along the vertical direction.

To prepare gels, we start with a low volume fraction of colloids added to the desired
polymer solution. After aggregation and sedimentation, the colloids form a weak solid-like
network which has a low volume fraction. We use a confocal (inverted) microscope to scan the
sample from the bottom to the top in steps of 0.5 µm. The field of view here is 41 µm×44 µm.
Typically we image 65–100 µm depth. Figure 1 (middle) shows a cross-section through the
gel showing the connectivity through the colloidal gel network. The algorithms that we use to
extract the features from the images are written in Matlab and are based on the algorithms
established by Grier and co-workers [8]. The coordinates of each of the 8900 particles
are obtained to a precision of ∼20 nm. Thus we gain the full 3D structural information.
Figure 1 (right) shows a reconstructed volume of the colloidal gel.

We image at controlled, timed intervals of �t = 5 min for 2 h. From volume
reconstructions that we perform with the full particle-by-particle structural data, we observe
that the structure appears static over this timescale. The solid that we observe, while not in
thermodynamic equilibrium, is in mechanical equilibrium. The density profiles up through
the sample, calculated from the full single-particle structural data, also exhibit evidence that
there are no large scale structural rearrangements, although there is evidence of small, local
relaxations in the structure on the timescale on which we observe. This results in fluctuations
in otherwise constant density profiles over time. Remarkably, the structure forms at a volume
fraction much lower than that required for random packing of non-interacting spheres.

For comparison to experimental data on gel structures formed from attractive, non-
penetrating spheres, we generate equilibrium hard sphere configurations as a reference state,
using an algorithm based on the Clarke and Wiley (CW) algorithm [9]. This algorithm starts
with a randomly distributed configuration of non-overlapping hard spheres at an initially much
lower volume fraction and cycles through increasing the radius of all the particles uniformly
while moving them to ensure no overlap, until the desired volume fraction is reached. The
system is equilibrated by standard molecular dynamics. In each configuration generated, the
number of particles is 1000,and all the results based on simulated HS are averaged over roughly
1000 configurations to give good statistics.

3. Translational order parameter

The central element of the translational order parameter that we use is the radial distribution
function (RDF), g(r). We measure the full 3D g(r) microscopically. For extracting the RDF
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Figure 2. (A) The geometry used for calculating the RDF in the volume of particle coordinates of a
colloidal gel. (B) Radial distribution functions for gel (——) and reference state hard sphere fluid
(– – –) at the same particle volume fraction, φ = 0.156. The gel data are obtained microscopically
from colloid–polymer systems using confocal microscopy, while the hard sphere fluid is generated
via computer using the C–W algorithm. (C) T ∗

s as obtained from (1). Symbols represent the
experimental data. ◦: gel1 at U0 = 4.2kT at contact; ♦: gel2 upper box, also at U0 = 4.2kT at
contact; �: gel2 lower box; and �: gel3 lower box, �: gel3 upper box, formed at U0 ∼ 4kT and a
shorter range of attraction. The solid curve is T ∗

s for non-interacting hard spheres, computed from
Percus–Yevick integral equation theory.

from the microscopic data, we select two concentric subvolumes in our volume of particle
coordinates that allow us to extend the calculation of the local particle distributions to 8 µm or
six particle diameters in each dimension. The geometry of this scheme is depicted in figure 2(A)
for the gel data reconstructed in figure 1 (right). We calculate the radial distribution function
for those particles in the inner box. The choice of box sizes is a compromise to obtain good
statistics while restricting the analysis to a well-defined region away from the edges of our
field of view and, particularly, well removed from the sample cell wall. A typical gel RDF,
from gel1, is shown in figure 2(B). A typical liquid g(r) from a set of configurations of hard
spheres at the corresponding packing density is also shown in figure 2(B). Clearly, there is
much more structure on the length scale of a few particle diameters in gels than in hard spheres
at the same density.

Previous authors have used a translational order parameter based on the integration of g(r)

over a scalar radial coordinate, written as (1). We have computed T ∗
s from the microscopic

data for three different gels: two at the same range and strength of interparticle attraction
but differing in starting volume fraction of colloidal particles; and a third with a shorter
range of attraction. We label these as ‘gel1’, ‘gel2’ and ‘gel3’. With 20 configurations
obtained experimentally at controlled time intervals for gel1, and 20 configurations for gel2
each affording two completely uncorrelated boxes within the volume, we realize 20 and 40
data sets, respectively, for extracting T ∗

s for these structures. For gel3 only one configuration
was obtained experimentally. The pair potential at contact, U0 (=U(σ )), is 4.2kT for gel1
and gel2, and ∼4.0kT for gel3, with the range of the attraction 1/14 of the colloidal particle
diameter, σ , for gel1 and gel2 and (1/17)σ for gel3.

Applying the Torquato translational order metric to our experimental gel systems, we are
not able to distinguish from experimental noise any change in T ∗

s with increasing rc when
rc is at least five particle diameters; hence we find that for practical purposes this integral
converges for the gels. Figure 2(C) shows that gels have a higher degree of order as measured
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Table 1. A summary of results from translational order parameter calculations for the colloidal
gels, compiled for both the scalar and volume integral forms of T ∗. σ , the standard deviation in
the value of T ∗ averaged over configurations, is a measure of the error.

φ T ∗
s (gel) σ T ∗

s (P–Y)
T ∗

s (gel)
T ∗

s (P–Y)
T ∗

v (gel) σ T ∗
v (P–Y)

T ∗
v (gel)

T ∗
v (P–Y)

gel1 0.159 0.194 0.006 0.034 5.65 0.071 0.004 0.005 13.7
gel2a 0.168 0.200 0.009 0.038 5.32 0.083 0.004 0.006 14.0
gel2b 0.200 0.186 0.009 0.049 3.78 0.080 0.004 0.009 9.00
gel3a 0.271 0.123 0.006 0.082 1.50 0.055 0.003 0.020 2.84
gel3b 0.303 0.141 0.006 0.100 1.40 0.059 0.003 0.027 2.19

a Top.
b Bottom.

by this order metric: in the plot of T ∗
s as a function of φ, they are well separated from hard

sphere fluid results calculated according to Percus–Yevick integral equation theory [10]. The
Torquato et al order metric is sensitive to and able to distinguish the difference in short range
order between gels and hard spheres, and hence is a useful order parameter for application in
this system with attractive interactions.

We redefine this order metric in terms of a volume integral over g(r):

T ∗
v = 1

4
3π(r3

c − σ 3)

∫ rc

σ

|g(r) − 1|4πr2 dr. (2)

In our case, we choose rc = 3.5/ρ, where ρ is the number density. This new translational
order parameter is physically appealing, as thermodynamic properties of an isotropic fluid,
notably internal energy and pressure, are directly related to a volume integral over g(r) [11].
It more strongly distinguishes the degree of order in local packing density in attractive, gelled
particles from that in non-interacting hard spheres. Comparing to the scalar integral, we find
that T ∗

v measured for the gels, shown in figure 2, differs even more markedly from its value
evaluated for the corresponding hard sphere system. The ratio to hard spheres for the same
volume fraction is consistently 2–3 times larger using the volume integral-based order metric.
The results for T ∗

s and T ∗
v are summarized in table 1.

Moreover, because T ∗
s involves the scalar integral of g(r), its evaluation weights shells

equally with increasing scalar radial coordinate. It does not count each particle equivalently
in its contribution to the order parameter. Thus the scalar version tends to suppress the order
contribution from length scales beyond the length scale of a single particle, and biases the
result to short range order by suppressing the contribution from long range order according
to 1/r2. While the integral converges above five particle diameters, we find that it does not
converge over fewer shells. Hence, for smaller cut-off distances, the value of the metric is very
sensitive to the choice of cut-off distance and it becomes important to weight the contribution
to the integral correctly.

For gels at the same attractive strength and range (gel1 and gel2), the small difference
in initial colloid volume fraction has no real effect on the structural parameters. By contrast,
both figures 2(C) and 3 show that with decrease of the range of attraction, the value of this
translational order metric for gels tends to approach that of the non-interacting hard spheres.
This agrees with what one expects, as with a shorter range of attraction, particles exhibit
structure more similar to that of hard spheres. However, it is not clear how such an attractive
system should approach non-interacting hard spheres; it should be highly dependent on the
path taken in control parameter space and this should be reflected in the order metric T ∗.
We will return to this point below during discussion of the short range orientational order in
the gels.
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Figure 3. The order metric T ∗
v for gels and for non-interacting hard spheres. Symbols represent the

experimental data according to the scheme used in figure 2. The solid curve is T ∗
s for non-interacting

hard spheres, calculated using Percus–Yevick theory.

This new order parameter can be extended to a more general one based on an angular
distribution function g(r, θ, φ) via

g(r) = 1

4πr2

∫ 2π

0

∫ π

0
g(r, θ, φ)r2 sin θ dθ dφ and (3)

T ∗
v =

∫ rc

σ

4πr2

{
1

4π

∫ 2π

0

∫ π

0
|g(r, θ, φ) − 1| sin θ dθ dφ

}
dr, (4)

so the order metric will be sensitive to anisotropy. This should be important for detecting any
structural bias arising under the influence of a uniaxial pressure [12]. The scalar integral-based
translational order parameter cannot be extended to a more general expression that retains the
full angle dependence of g(r). These virtues of T ∗

v make it a good order parameter.

4. Bond angle distribution

The method of Steinhardt et al using a decomposition of the local arrangement of particles
into spherical harmonics is an effective way to pick out local and global orientational order
in the packing of atoms or of non-interacting hard sphere particles [13]. Indeed, this method
provides a signature for identifying the particular lattice structure present in crystalline solids,
in homogeneous systems. One compelling idea is to extend this method to the gel colloidal
structures formed from interacting (attractive) particles. However, any local surface particles
existing in the calculation tend to enhance the degree of local order per particle. In attempts
to distinguish the gel structure from random packings using this method, we have not seen
the sensitivity of the different orders of spherical harmonics to the local order that is clearly
evident in the colloidal gel networks.

To describe the orientation of bonds in gel systems,we introduce the sin θ -normalized bond
angle distribution. First we define ‘bonds’ as the lines connecting nearest neighbour particles.
The nearest neighbours of any given particle are those particles lying within the first coordinate
shell, determined by radial distances σ to 1.4σ . A given particle i together with two nearest
neighbours j and k forms a bond angle with the central particle as the vertex, represented in the
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Figure 4. (A) The angle formed by three non-interacting particles, determined purely by entropy.
The probability P(θ) ∝ sin(θ). (B) The distribution of nearest neighbour bond angles for simulated
hard spheres in the low density limit is precisely that of an ideal gas, except at very small angles
which are disallowed due to the sphere impenetrability.

inset of figure 5. The angle for the triplet is calculated as θ = cos−1[( �Ri j · �Rik)/| �Ri j || �Rik |]. The
bond angle distribution is related to the triplet correlation function, limited to nearest neighbour
interparticle distances. Using the full structural data, we compute the nearest neighbour triplet
angles for all the particles in the region of interest. We calculate the distribution of the angles
from θc to π , bin the data into 72 bins and normalize the distribution in such a way that the
probability of a bond angle between θ and θ + dθ satisfies

1

π − θc

∫ π

θc

P(θ)

sin(θ)
dθ = 1. (5)

The lower cut-off of θc reflects the non-penetrability of the spherical colloidal particles. Its
value would be 60◦ if the nearest neighbours could be defined to be those particles in perfect
contact, with all interparticle distances at σ . With the nearest neighbour distance definition
relaxed to 1.4σ , triplet angles smaller than 60◦ are allowed. In this case, a θc of 40◦ defines
the minimum angle impenetrability limit.

The bond angle distribution gives information about the local allocation of particles in
orientation. We would expect a dramatic change in this distribution whenever we have a
transition involving a change in the packing of the constituent particles—for example, upon
undergoing a disorder–order liquid-to-crystal transition of hard spheres [14] or, equivalently,
upon undergoing a liquid–solid gel transition induced by weak interparticle attraction.
Importantly, the bond angle distribution is independent of any fixed reference frame and instead
defines a local plane for each triplet of particles.

To understand the physics of the bond angle distribution (BAD), consider an ideal gas. For
an ideal gas, a completely uncorrelated system, the angle formed by three particles is purely
determined by entropy. The probability P(θ) is proportional to sin(θ) (for the same reason
there is more land at the Earth’s equator than at the Earth’s poles). We have sketched this in
figure 4. Thus for ideal gas, we expect the bond angles to be distributed according to sin(θ).
Indeed, for simulated hard spheres in the low density limit, shown in figure 4, the distribution
of nearest neighbour bond angles is precisely that of an ideal gas, except at the very small
angles disallowed due to the mutual impenetrability of the non-interacting particles. Hence
we normalize all of our bond angle distributions to the uncorrelated, ideal gas result at the
corresponding density, just as one does in the calculation of the radial distribution function.
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Figure 5. The bond angle distribution P(θ) discriminates between colloidal gels and non-
interacting hard sphere structures. ◦: P(θ) for gel1. ——: the bond angle distribution for
the corresponding density hard sphere reference system, at φ = 0.156.

The bond angle distribution can be used to distinguish the gel phase. A plot of the bond
angle distribution for gel1 appears in figure 5. The bond angle distribution for the corresponding
density hard sphere reference system, at φ = 0.156, is also shown for comparison. The
degrees of preferred packing are clearly quite different in the two systems. The gel BAD
has signatures reflecting enhanced packing at 60◦, 120◦ and, greatly enhanced, at 180◦, as
well as less prominent but apparently real features at 140◦ and 160◦. These angles can be
understood from the nearly equilateral configurations of three particles, in the case of 60◦,
and a fourth particle between three closely packed particles forcing an angle close to 120◦—
situations that normally arise in dense packings. Here the particle volume fraction is only 0.16.
Nevertheless, these bond angles are easily seen in the gels, for example in the inset of figure 5.
The predilection for 180◦ could arise mainly from the same kinds of adjacent equilateral
packings, or from the chains of particles that are evident throughout the gel structure.

With the increase in density of HS fluids, and the accompanying development of short
range order due to packing, there appears some local crystalline structure, as seen in figure 6.
Peaks appear at 60◦ and 120◦, again corresponding to enhanced packing in nearly equilateral
configurations. Comparison with figure 5 reveals that gels pack similarly not to hard sphere
fluids at the same density as the gel, but to much denser hard sphere fluids. However, the
key distinction to be made is the following: the attractive hard spheres show some degree of
local crystalline order because they are under tension, whereas the non-interacting dense hard
sphere fluids show some degree of local crystalline order because they are under compression.
The similarities in structure are due to different physics. In addition, gels display short range
orientational order not found in the bond angle distribution for a dense fluid, at 140◦ and
at 160◦.

The information in the local bond angle distribution among the first shell of neighbours for
gel structures is as robust as it is rich. The same signatures are seen: in uncorrelated (separated
by distance larger than the length scale over which structure is seen in the RDF) regions in
the same gel samples; in different samples prepared under the same initial conditions; and
in the same gels over time, subject to density fluctuations. Figure 7(A) shows bond angle
distributions P(θ) for gels prepared at the same range and strength of interparticle attraction



Experimental determination of order in non-equilibrium solids using colloidal gels S5199

0 20 40 60 80 100 120 140 160 180
0

1

2

3

P
(θ

)/
si

n
θ

Figure 6. The bond angle distribution P(θ) for simulated equilibrium hard sphere systems at
increasing densities: φ = 0.169 (——), φ = 0.294 (grey ——), φ = 0.483 (– – –), fluids;
φ = 0.516 (grey – – –), in the coexistence region with a small degree of crystallization; and
φ = 0.562 ( ), fully crystallized.
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Figure 7. We show that the local orientational order measure P(θ) is sensitive to internal control
parameters of the colloidal gel. (A) Measurements of local orientational order in two gel structures
prepared under the same initial conditions of attractive range and strength: bond angle distributions
P(θ) for gel1 (◦) and gel2 (•), each prepared at U0 = 4.2kT , σ = 1.3 µm, range = (1/14)σ .
(B) Bond angle distributions for gel3 (•), range ∼ (1/14)σ , U0 = 4.2kT , φ = 0.270; and gel1
(◦), range ∼ (1/17)σ , U0 ∼ 4.0kT , φ = 0.156. Also plotted are the bond angle distributions for
the hard sphere reference systems at the corresponding densities, obtained from simulated data:
φ = 0.270, ——; φ = 0.156, grey ——.

and using the same sizes of colloid and polymer. The bond angle distributions for the two
samples are indistinguishable.

Results comparing local structure in two gels with different ranges of attraction are shown
in figure 7(B). With the attenuation of the range of attraction, one would expect the features
for the bond angle distribution in gels to also become smaller, and features for those gels
would be less obvious compared to those for hard sphere systems. We should expect that the
weaker the attraction between particles becomes, the more hard sphere-like their behaviour
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Figure 8. The robustness of apparent signatures of short range order unique to gels. P(θ) calculated
for gel1 for 27 different subvolumes, as represented in the inset, and organized according to the local
density in the subvolume: φ = 0.23(——), φ = 0.21 (grey ——), φ = 0.19 (– – –), φ = 0.17
(grey – – –), φ = 0.15 ( ) and φ = 0.13 (grey ).

will become. The situation is more interesting and subtle than this. Two competing effects
act simultaneously: that of the higher colloid packing density under weaker attraction, which
should tend to cause an increase in intensity of the short range order peaks for the dense
hard sphere packing; and that of the weaker gel-like structure and corresponding decrease in
intensity of the short range order peaks characteristic of the gel. It is not clear a priori which
of the two effects will be dominant, or whether in fact they will (coincidentally or by design)
exactly cancel for all gels as the strength of the attraction is decreased until purely hard sphere
behaviour is reached. At the attractive strength of the one gel studied in this regime, we see in
fact a decrease in the intensity of the peaks, shown in figure 7.

To gain some physical insight into the apparent signatures of additional short range order
at 140◦ and 160◦ in gels that is absent in the short range order in hard sphere systems, we test
the robustness of these peaks with respect to density. We study the bond angle distribution
within a small box of fixed side length and unique local density at different positions in the
sample. The gel structure is subdivided into 3 × 3 × 3 small regions and the calculation
carried out for all 20 time-delayed configurations of gel1, resulting (due to fluctuations within
individual boxes over time) in 540 boxes in total. We compute an average angle distribution
for each density, choosing for comparison only those densities which are found in a significant
number of boxes. Peaks which disappear with changing density should be the result of
systematic noise, while those which are robust against changing density reflect real packing
effects. The results, for local volume fractions ranging from φ = 0.13 to 0.23, are shown in
figure 8. We find consistently that the peak at 140◦ disappears with decreasing density while
the unidentified peak at 160◦ persists. As expected, the crystalline order peaks at 60◦, 120◦ and
180◦ persist.

This coarse graining approach applied here to correlate preferred local orientation of
packing with local density merits further study. For those peaks that persist, this early result
reinforces what we have observed in the translational order: it suggests that the attractive
force is the internal control parameter that determines the structure. While particle number
density determines the total volume of voids and, put simply, the number of particles available
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for packing, particle number density has little effect on the packing of the particles which
ultimately gives the structure its mechanical rigidity. This is in marked contrast to the case
for non-interacting hard spheres, where, as can be seen in figure 6, particle number density
completely determines the packing of particles. Intriguingly, it appears that in colloidal systems
with depletion attractions of the order of several kT , the depth and range of the attraction are
the control parameters that determine the structure.

5. Conclusion

We have quantified the structure of real colloidal gels in two ways: via the translational order
parameter and the bond angle distribution. In doing so we have applied the translational order
metric proposed by Torquato et al, have shown that it is well able to distinguish structure in
systems with attractive interactions from that in non-interacting hard sphere systems and have
refined this order metric so that it weights all length scales equally in their contribution to the
order and is sensitive to anisotropy. It is clear from these results that attractive particles occupy
a completely different phase space as compared to non-interacting hard spheres. This work
suggests that the depth and range of an attraction added to hard spheres are internal control
parameters in determining the structure in colloidal gels and perhaps, by extension, other kinds
of gels. As for crystalline solids, it is remarkable that such detail can be found in the local
order in the shell of nearest neighbours. The local bond angle distributions reveal that attractive
hard spheres build structures such that, under tension, the spheres assume local arrangements
very similar to the local arrangements in dense non-interacting hard sphere systems under
compression. These arrangements must be intimately related to the mechanical properties
and, indeed, may be crucial to the lifetime of the gel.
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